aboutsummaryrefslogtreecommitdiff
path: root/iomt.c
blob: fca951e92eef3249b1cdd06d931a680f11fafac0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
#include "iomt.h"
#include "crypto.h"

#include <assert.h>
#include <string.h>

#include <openssl/hmac.h>
#include <openssl/sha.h>

#include <sqlite3.h>

hash_t hash_node(const struct iomt_node node)
{
    if(node.idx != 0)
        return sha256(&node, sizeof(node));
    else
        return hash_null;
}

static void bind_placeholders(const struct iomt *tree, sqlite3_stmt *st)
{
    if(tree->db.key1_name)
    {
        sqlite3_bind_int(st, 1, tree->db.key1_val);
    }
    if(tree->db.key2_name)
    {
        sqlite3_bind_int(st, 2, tree->db.key2_val);
    }
}

static void reset_and_bind(const struct iomt *tree, sqlite3_stmt *st)
{
    sqlite3_reset(st);
    bind_placeholders(tree, st);
}

/* internal nodes only */
hash_t iomt_getnode(const struct iomt *tree, uint64_t idx)
{
    if(tree->in_memory)
        return tree->mem.mt_nodes[idx];
    else
    {
        sqlite3_stmt *st = tree->db.getnode;

        reset_and_bind(tree, st);

        sqlite3_bind_int64(st, 3, idx);

        int rc = sqlite3_step(st);
        if(rc == SQLITE_ROW)
        {
            hash_t ret;
            memcpy(&ret, sqlite3_column_blob(st, 0), sizeof(ret));

            return ret;
        }
        else
        {
            return hash_null;
        }
    }
}

void iomt_setnode(const struct iomt *tree, uint64_t idx, hash_t val)
{
    if(tree->in_memory)
        tree->mem.mt_nodes[idx] = val;
    else
    {
        //printf("Setting node idx = %d in %s\n", idx, tree->db.nodes_table);

        sqlite3 *handle = tree->db.db;

        sqlite3_stmt *st = tree->db.updatenode;
        reset_and_bind(tree, st);

        sqlite3_bind_blob(st, 3, &val, sizeof(val), SQLITE_TRANSIENT);

        sqlite3_bind_int64(st, 4, idx);

        int rc = sqlite3_step(st);

        int changes = sqlite3_changes(handle);

        /* Failure, likely because node doesn't exist */
        if(rc != SQLITE_DONE || !changes)
        {
            st = tree->db.insertnode;
            reset_and_bind(tree, st);

            sqlite3_bind_int64(st, 3, idx);
            sqlite3_bind_blob(st, 4, &val, sizeof(val), SQLITE_TRANSIENT);

            if(sqlite3_step(st) != SQLITE_DONE)
            {
                //printf("Failed 1: %s\n", sqlite3_errmsg(tree->db.db));
            }
        }
        else
        {
            //printf("Successfully updated node %d\n", idx);
        }
    }
}

struct iomt_node iomt_getleaf(const struct iomt *tree, uint64_t leafidx)
{
    if(tree->in_memory)
        return tree->mem.mt_leaves[leafidx];
    else
    {
        sqlite3_stmt *st = tree->db.getleaf;
        reset_and_bind(tree, st);

        sqlite3_bind_int64(st, 3, leafidx);

        int rc = sqlite3_step(st);
        if(rc == SQLITE_ROW)
        {
            struct iomt_node ret;

            ret.idx = sqlite3_column_int64(st, 0);
            ret.next_idx = sqlite3_column_int64(st, 1);
            memcpy(&ret.val, sqlite3_column_blob(st, 2), sizeof(ret.val));

            return ret;
        }
        else
        {
            //printf("Failed 2: %s\n", sqlite3_errmsg(tree->db.db));
            //printf("Failed to look up leaf %lu in %s\n", leafidx, tree->db.leaves_table);
            return node_null;
        }
    }
}

void iomt_setleaf(struct iomt *tree, uint64_t leafidx, struct iomt_node val)
{
    if(tree->in_memory)
        tree->mem.mt_leaves[leafidx] = val;
    else
    {
        //printf("Setting leaf idx = %lu in %s\n", leafidx, tree->db.leaves_table);

        sqlite3 *handle = tree->db.db;

        sqlite3_stmt *st = tree->db.updateleaf;
        reset_and_bind(tree, st);

        sqlite3_bind_int64(st, 3, val.idx);
        sqlite3_bind_int64(st, 4, val.next_idx);
        sqlite3_bind_blob(st, 5, &val.val, sizeof(val.val), SQLITE_TRANSIENT);

        sqlite3_bind_int64(st, 6, leafidx);

        int rc = sqlite3_step(st);

        int changes = sqlite3_changes(handle);

        /* Failure, likely because node doesn't exist */
        if(rc != SQLITE_DONE || !changes)
        {
            st = tree->db.insertleaf;
            reset_and_bind(tree, st);

            sqlite3_bind_int64(st, 3, leafidx);
            sqlite3_bind_int64(st, 4, val.idx);
            sqlite3_bind_int64(st, 5, val.next_idx);
            sqlite3_bind_blob(st, 6, &val.val, sizeof(val.val), SQLITE_TRANSIENT);

            if(sqlite3_step(st) != SQLITE_DONE)
            {
                printf("Failed 3: %s\n", sqlite3_errmsg(handle));
            }

            //printf("Successfully inserted (%s)\n", sqlite3_errmsg(handle));
        }
    }
}

hash_t *merkle_complement(const struct iomt *tree, uint64_t leafidx, int **orders)
{
    uint64_t *compidx = bintree_complement(leafidx, tree->mt_logleaves, orders);
    hash_t *comp = lookup_nodes(tree, compidx, tree->mt_logleaves);
    free(compidx);
    return comp;
}

/* Index-Ordered Merkle Tree routines: */
/* Calculate the value of all the nodes of the tree, given the IOMT
 * leaves in mt_leaves. Leaf count *must* be an integer power of two,
 * otherwise bad things will happen. This function should only need to
 * be called once, namely when the service provider is created. */
void iomt_fill(struct iomt *tree)
{
    if(!tree->in_memory)
        begin_transaction(tree->db.db);

    for(uint64_t i = 0; i < tree->mt_leafcount; ++i)
    {
        uint64_t mt_idx = ((uint64_t)1 << tree->mt_logleaves) - 1 + i;
        iomt_setnode(tree, mt_idx, hash_node(iomt_getleaf(tree, i)));
    }
    /* now loop up from the bottom level, calculating the parent of
     * each pair of nodes */
    for(int i = tree->mt_logleaves - 1; i >= 0; --i)
    {
        uint64_t baseidx = ((uint64_t)1 << i) - 1;
        for(uint64_t j = 0; j < ((uint64_t)1 << i); ++j)
        {
            uint64_t mt_idx = baseidx + j;
            iomt_setnode(tree, mt_idx, merkle_parent(iomt_getnode(tree, 2 * mt_idx + 1),
                                                     iomt_getnode(tree, 2 * mt_idx + 2),
                                                     0));
        }
    }

    if(!tree->in_memory)
        commit_transaction(tree->db.db);
}

/* A bit of a hack: our complement calculation returns the *indices*
 * complementary nodes, which is good because the indices are much
 * smaller than the actual nodes (which are 32 bytes each with
 * SHA-256). However, the trusted module requires an array of the
 * actual hash values of the complementary nodes. It would be optimal
 * to modify each function to take the array of all nodes in the tree
 * in addition to the complement indices, but this function will serve
 * as a shim in the meantime. */

/* TODO: database query? */
hash_t *lookup_nodes(const struct iomt *tree, const uint64_t *indices, int n)
{
    hash_t *ret = calloc(n, sizeof(hash_t));
    for(int i = 0; i < n; ++i)
        ret[i] = iomt_getnode(tree, indices[i]);
    return ret;
}

void restore_nodes(struct iomt *tree, const uint64_t *indices, const hash_t *values, int n)
{
    if(!tree->in_memory)
        begin_transaction(tree->db.db);

    for(int i = 0; i < n; ++i)
        iomt_setnode(tree, indices[i], values[i]);

    if(!tree->in_memory)
        commit_transaction(tree->db.db);
}

/* Update mt_nodes to reflect a change to a leaf node's
 * value. Optionally, if old_dep is not NULL, *old_dep will be made to
 * point to an array of length mt_logleaves that contains the old node
 * values (whose indices are returned by bintree_ancestors()). NOTE:
 * this function will NOT set the corresponding IOMT leaf; use
 * iomt_update_leaf_full for that. */
void merkle_update(struct iomt *tree, uint64_t leafidx, hash_t newval, hash_t **old_dep)
{
    if(old_dep)
        *old_dep = calloc(tree->mt_logleaves, sizeof(hash_t));

    uint64_t idx = ((uint64_t)1 << tree->mt_logleaves) - 1 + leafidx;

    if(!tree->in_memory)
        begin_transaction(tree->db.db);

    iomt_setnode(tree, idx, newval);
    for(int i = 0; i < tree->mt_logleaves; ++i)
    {
        /* find the merkle parent of the two children first */
        hash_t parent = merkle_parent(iomt_getnode(tree, idx),
                                      iomt_getnode(tree, bintree_sibling(idx)),
                                      (idx + 1) & 1);

        idx = bintree_parent(idx);

        /* TODO: optimize */
        /* save old value */
        if(old_dep)
            (*old_dep)[i] = iomt_getnode(tree, idx);

        iomt_setnode(tree, idx, parent);
    }

    if(!tree->in_memory)
        commit_transaction(tree->db.db);
}

hash_t iomt_getroot(const struct iomt *tree)
{
    if(tree)
        return iomt_getnode(tree, 0);
    return hash_null;
}

/* find a node with given idx */
struct iomt_node iomt_find_leaf(const struct iomt *tree, uint64_t idx, uint64_t *leafidx)
{
    if(tree->in_memory)
    {
        for(uint64_t i = 0; i < tree->mt_leafcount; ++i)
            if(idx == iomt_getleaf(tree, i).idx)
            {
                if(leafidx)
                    *leafidx = i;
                return iomt_getleaf(tree, i);
            }
        return node_null;
    }
    else
    {
        sqlite3_stmt *st = tree->db.findleaf;
        reset_and_bind(tree, st);

        sqlite3_bind_int64(st, 3, idx);

        if(sqlite3_step(st) == SQLITE_ROW)
        {
            if(leafidx)
                *leafidx = sqlite3_column_int64(st, 0);
            struct iomt_node ret;
            ret.idx = idx;
            ret.next_idx = sqlite3_column_int64(st, 1);
            memcpy(&ret.val, sqlite3_column_blob(st, 2), sizeof(ret.val));

            return ret;
        }
        return node_null;
    }
}

struct iomt_node iomt_find_encloser(const struct iomt *tree, uint64_t idx, uint64_t *leafidx)
{
    if(tree->in_memory)
    {
        for(uint64_t i = 0; i < tree->mt_leafcount; ++i)
            if(encloses(iomt_getleaf(tree, i).idx, iomt_getleaf(tree, i).next_idx, idx))
            {
                if(leafidx)
                    *leafidx = i;
                return iomt_getleaf(tree, i);
            }
        return node_null;
    }
    else
    {
        sqlite3_stmt *st = tree->db.findencloser;
        reset_and_bind(tree, st);

        sqlite3_bind_int64(st, 3, idx);

        if(sqlite3_step(st) == SQLITE_ROW)
        {
            if(leafidx)
                *leafidx = sqlite3_column_int64(st, 0);
            struct iomt_node ret;
            ret.idx = sqlite3_column_int64(st, 1);
            ret.next_idx = sqlite3_column_int64(st, 2);
            memcpy(&ret.val, sqlite3_column_blob(st, 3), sizeof(ret.val));

            return ret;
        }
        return node_null;
    }
}

struct iomt_node iomt_find_leaf_or_encloser(const struct iomt *tree, uint64_t idx, uint64_t *leafidx)
{
    if(tree->in_memory)
    {
        for(uint64_t i = 0; i < tree->mt_leafcount; ++i)
        {
            if(iomt_getleaf(tree, i).idx == idx ||
               encloses(iomt_getleaf(tree, i).idx, iomt_getleaf(tree, i).next_idx, idx))
            {
                if(leafidx)
                    *leafidx = i;
                return iomt_getleaf(tree, i);
            }
        }
        return node_null;
    }
    else
    {
        sqlite3_stmt *st = tree->db.findleaf_or_encloser;
        reset_and_bind(tree, st);

        sqlite3_bind_int64(st, 3, idx);

        if(sqlite3_step(st) == SQLITE_ROW)
        {
            if(leafidx)
                *leafidx = sqlite3_column_int64(st, 0);
            struct iomt_node ret;
            ret.idx = sqlite3_column_int64(st, 1);
            ret.next_idx = sqlite3_column_int64(st, 2);
            memcpy(&ret.val, sqlite3_column_blob(st, 3), sizeof(ret.val));

            return ret;
        }
        return node_null;
    }
}

void iomt_update(struct iomt *tree, uint64_t idx, hash_t newval)
{
    /* update the leaf first, then use merkle_update */
    uint64_t leafidx = 0;
    struct iomt_node leaf = iomt_find_leaf(tree, idx, &leafidx);
    leaf.val = newval;
    iomt_setleaf(tree, leafidx, leaf);

    merkle_update(tree, leafidx, hash_node(leaf), NULL);
}

void iomt_update_leaf_full(struct iomt *tree, uint64_t leafidx,
                           uint64_t new_idx, uint64_t new_next_idx, hash_t new_val)
{
    struct iomt_node leaf = (struct iomt_node) { new_idx, new_next_idx, new_val };
    iomt_setleaf(tree, leafidx, leaf);

    merkle_update(tree, leafidx, hash_node(leaf), NULL);
}

void iomt_update_leaf_idx(struct iomt *tree, uint64_t leafidx,
                          uint64_t new_idx)
{
    struct iomt_node leaf = iomt_getleaf(tree, leafidx);
    leaf.idx = new_idx;

    iomt_setleaf(tree, leafidx, leaf);

    merkle_update(tree, leafidx, hash_node(leaf), NULL);
}

void iomt_update_leaf_nextidx(struct iomt *tree, uint64_t leafidx,
                              uint64_t new_next_idx)
{
    struct iomt_node leaf = iomt_getleaf(tree, leafidx);
    leaf.next_idx = new_next_idx;

    iomt_setleaf(tree, leafidx, leaf);

    merkle_update(tree, leafidx, hash_node(leaf), NULL);
}

void iomt_update_leaf_hash(struct iomt *tree, uint64_t leafidx,
                           hash_t new_val)
{
    struct iomt_node leaf = iomt_getleaf(tree, leafidx);
    leaf.val = new_val;

    iomt_setleaf(tree, leafidx, leaf);

    merkle_update(tree, leafidx, hash_node(leaf), NULL);
}

/* Create a merkle tree with 2^logleaves leaves, each initialized to a
 * zero leaf (not a placeholder!) */
struct iomt *iomt_new(int logleaves)
{
    struct iomt *tree = calloc(1, sizeof(struct iomt));

    tree->in_memory = true;

    tree->mt_leafcount = (uint64_t)1 << logleaves;
    tree->mt_logleaves = logleaves;
    tree->mem.mt_leaves = calloc(tree->mt_leafcount, sizeof(struct iomt_node));

    tree->mem.mt_nodes = calloc(2 * tree->mt_leafcount - 1, sizeof(hash_t));

    return tree;
}

/* Assumes `buf' is large enough */
/* */
static void generate_and_clauses(const struct iomt *tree, char *buf)
{
    buf[0] = '\0';

    if(tree->db.key1_name)
        buf += sprintf(buf, " AND %s = ?1", tree->db.key1_name);
    if(tree->db.key2_name)
        buf += sprintf(buf, " AND %s = ?2", tree->db.key2_name);
}

static void generate_where_clause(const struct iomt *tree, char *buf)
{
    buf[0] = '\0';

    if(tree->db.key1_name || tree->db.key2_name)
    {
        buf += sprintf(buf, " WHERE ");
        if(tree->db.key1_name)
            buf += sprintf(buf, "%s = ?1", tree->db.key1_name);
        if(tree->db.key2_name)
        {
            if(tree->db.key1_name)
                buf += sprintf(buf, " AND ");

            buf += sprintf(buf, "%s = ?2", tree->db.key1_name);
        }
    }
}

/* returns one of the following:
   "" - no keys
   ", key1" - key1 only
   ", key2" - key2 only
   ", key1, key2" - both
*/
static void generate_key_list(const struct iomt *tree, char *buf)
{
    buf[0] = '\0';

    if(tree->db.key1_name)
        buf += sprintf(buf, ", %s", tree->db.key1_name);
    if(tree->db.key2_name)
        buf += sprintf(buf, ", %s", tree->db.key2_name);
}

/* returns one of the following:
   "" - no keys
   ", key1" - key1 only
   ", key2" - key2 only
   ", key1, key2" - both
*/
static void generate_placeholder_list(const struct iomt *tree, char *buf)
{
    buf[0] = '\0';

    if(tree->db.key1_name)
        buf += sprintf(buf, ", ?1");
    if(tree->db.key2_name)
        buf += sprintf(buf, ", ?2");
}

struct iomt *iomt_new_from_db(void *db,
                              const char *nodes_table, const char *leaves_table,
                              const char *key1_name, int key1_val,
                              const char *key2_name, int key2_val,
                              int logleaves)
{
    struct iomt *tree = calloc(1, sizeof(struct iomt));

    tree->in_memory = false;

    tree->mt_leafcount = (uint64_t)1 << logleaves;
    tree->mt_logleaves = logleaves;

    tree->db.db = db;
    tree->db.nodes_table = nodes_table;
    tree->db.leaves_table = leaves_table;
    tree->db.key1_name = key1_name;
    tree->db.key1_val = key1_val;
    tree->db.key2_name = key2_name;
    tree->db.key2_val = key2_val;

    /* compile statements now to save time */
    char sql[1000];
    char and_clauses[1000], key_list[1000], placeholder_list[1000];

    generate_and_clauses(tree, and_clauses);
    generate_key_list(tree, key_list);
    generate_placeholder_list(tree, placeholder_list);

    sprintf(sql, "SELECT Val FROM %s WHERE NodeIdx = ?3%s;",
             tree->db.nodes_table,
             and_clauses);
    sqlite3_prepare_v2(db, sql, -1, &tree->db.getnode, 0);

    sprintf(sql, "UPDATE %s SET Val = ?3 WHERE NodeIdx = ?4%s;",
             tree->db.nodes_table,
             and_clauses);
    sqlite3_prepare_v2(db, sql, -1, &tree->db.updatenode, 0);

    sprintf(sql, "INSERT INTO %s ( NodeIdx, Val%s ) VALUES ( ?3, ?4%s );",
             tree->db.nodes_table,
             key_list,
             placeholder_list);
    sqlite3_prepare_v2(db, sql, -1, &tree->db.insertnode, 0);

    sprintf(sql, "SELECT Idx, NextIdx, Val FROM %s WHERE LeafIdx = ?3%s;",
             tree->db.leaves_table,
             and_clauses);
    sqlite3_prepare_v2(db, sql, -1, &tree->db.getleaf, 0);

    sprintf(sql, "UPDATE %s SET Idx = ?3, NextIdx = ?4, Val = ?5 WHERE LeafIdx = ?6%s;",
             tree->db.leaves_table,
             and_clauses);
    sqlite3_prepare_v2(db, sql, -1, &tree->db.updateleaf, 0);

    sprintf(sql, "INSERT INTO %s ( LeafIdx, Idx, NextIdx, Val%s ) VALUES ( ?3, ?4, ?5, ?6%s );",
             tree->db.leaves_table,
             key_list,
             placeholder_list);
    sqlite3_prepare_v2(db, sql, -1, &tree->db.insertleaf, 0);

    sprintf(sql, "SELECT LeafIdx, NextIdx, Val FROM %s WHERE Idx = ?3%s;",
             tree->db.leaves_table,
             and_clauses);
    sqlite3_prepare_v2(db, sql, -1, &tree->db.findleaf, 0);

    /* These both need table scans. FIXME */
    sprintf(sql, "SELECT LeafIdx, Idx, NextIdx, Val FROM %s WHERE ( ( Idx < ?3 AND ?3 < NextIdx ) OR ( NextIdx < Idx AND Idx < ?3 ) OR ( ?3 < NextIdx AND NextIdx < Idx ) )%s;",
             tree->db.leaves_table,
             and_clauses);
    sqlite3_prepare_v2(db, sql, -1, &tree->db.findencloser, 0);

    sprintf(sql, "SELECT LeafIdx, Idx, NextIdx, Val FROM %s WHERE ( ( Idx < ?3 AND ?3 < NextIdx ) OR ( NextIdx < Idx AND Idx < ?3 ) OR ( ?3 < NextIdx AND NextIdx < Idx ) OR ( Idx = ?3 ) )%s;",
             tree->db.leaves_table,
             and_clauses);
    sqlite3_prepare_v2(db, sql, -1, &tree->db.findleaf_or_encloser, 0);

    return tree;
}

static void iomt_copy_from_db(struct iomt *newtree, const struct iomt *oldtree)
{
    /* Write nodes which are not null (others are assumed to be
     * zero), with database query. */

    assert(!oldtree->in_memory);

    /* PROBLEM: the database could have nodes or leaves whose indexes
     * are too large for this logleaves level (from when the tree is
     * shrunk) */

    char and_clauses[1000];
    generate_and_clauses(oldtree, and_clauses);

    char sql[1000];
    sprintf(sql, "SELECT LeafIdx, Idx, NextIdx, Val FROM %s WHERE LeafIdx < ?3%s;",
            oldtree->db.leaves_table,
            and_clauses);

    sqlite3_stmt *st;
    sqlite3_prepare_v2(oldtree->db.db, sql, -1, &st, 0);
    bind_placeholders(oldtree, st);

    sqlite3_bind_int64(st, 3, newtree->mt_leafcount);

    int rc;
    do {
        rc = sqlite3_step(st);

        if(rc == SQLITE_ROW)
        {
            struct iomt_node node;

            node.idx = sqlite3_column_int64(st, 1);
            node.next_idx = sqlite3_column_int64(st, 2);
            memcpy(&node.val, sqlite3_column_blob(st, 3), sizeof(node.val));

            iomt_setleaf(newtree, sqlite3_column_int64(st, 0), node);
        }
    } while(rc == SQLITE_ROW);

    sqlite3_finalize(st);

    sprintf(sql, "SELECT NodeIdx, Val FROM %s WHERE NodeIdx < ?3%s;",
            oldtree->db.nodes_table,
            and_clauses);

    sqlite3_prepare_v2(oldtree->db.db, sql, -1, &st, 0);
    bind_placeholders(oldtree, st);

    sqlite3_bind_int64(st, 3, 2 * newtree->mt_leafcount - 1);

    do {
        rc = sqlite3_step(st);

        if(rc == SQLITE_ROW)
        {
            hash_t val;
            memcpy(&val, sqlite3_column_blob(st, 1), sizeof(val));

            iomt_setnode(newtree, sqlite3_column_int64(st, 0), val);
        }
    } while(rc == SQLITE_ROW);

    sqlite3_finalize(st);
}

/* make a copy of the IOMT with database backing (there will be no
 * pointer semantics between the two trees when this function
 * returns) */
struct iomt *iomt_dup_in_db(void *db,
                            const char *nodes_table, const char *leaves_table,
                            const char *key1_name, int key1_val,
                            const char *key2_name, int key2_val,
                            const struct iomt *oldtree)
{
    struct iomt *newtree = iomt_new_from_db(db, nodes_table, leaves_table,
                                            key1_name, key1_val,
                                            key2_name, key2_val,
                                            oldtree->mt_logleaves);

    /* TODO: make a single DB query for all the leaves/nodes, then insert from there */
    /* This is extremely slow. */
    begin_transaction(newtree->db.db);

    /* copy nodes, leaves (we do not recalculate the tree) */

    if(!oldtree->in_memory)
    {
        iomt_copy_from_db(newtree, oldtree);
    }
    else
    {
        /* Loop over all nodes, but only write the nonzero ones (to
         * save time) */
        for(uint64_t i = 0; i < oldtree->mt_leafcount; ++i)
            if(oldtree->mem.mt_leaves[i].idx != 0)
                iomt_setleaf(newtree, i, oldtree->mem.mt_leaves[i]);

        for(uint64_t i = 0; i < 2 * oldtree->mt_leafcount - 1; ++i)
        {
            if(!is_zero(oldtree->mem.mt_nodes[i]))
                iomt_setnode(newtree, i, oldtree->mem.mt_nodes[i]);
        }
    }

    commit_transaction(newtree->db.db);

    return newtree;
}

/* produces a new IOMT with no relation with the old one (no pointer
 * semantics) */
struct iomt *iomt_dup(const struct iomt *oldtree)
{
    if(!oldtree)
        return NULL;

    struct iomt *newtree = calloc(1, sizeof(struct iomt));
    newtree->mt_leafcount = oldtree->mt_leafcount;
    newtree->mt_logleaves = oldtree->mt_logleaves;

    newtree->in_memory = true;
    newtree->mem.mt_leaves = calloc(oldtree->mt_leafcount, sizeof(struct iomt_node));
    newtree->mem.mt_nodes = calloc(2 * oldtree->mt_leafcount - 1, sizeof(hash_t));

    if(oldtree->in_memory)
    {
        memcpy(newtree->mem.mt_leaves, oldtree->mem.mt_leaves, oldtree->mt_leafcount * sizeof(struct iomt_node));
        memcpy(newtree->mem.mt_nodes, oldtree->mem.mt_nodes, (2 * oldtree->mt_leafcount - 1) * sizeof(hash_t));
    }
    else
    {
        iomt_copy_from_db(newtree, oldtree);
    }

    return newtree;
}

/* TODO: error checking */
uint64_t read_u64(int (*read_fn)(void *userdata, void *buf, size_t len), void *userdata)
{
    uint64_t n;
    if(read_fn(userdata, &n, sizeof(n)) != sizeof(n))
    {
        printf("short read\n");
        return 0;
    }
    return n;
}

void write_u64(void (*write_fn)(void *userdata, const void *data, size_t len),
               void *userdata, uint64_t n)
{
    write_fn(userdata, &n, sizeof(n));
}

#define IOMT_EMPTY (uint64_t)0xFFFFFFFFFFFFFFFFUL

void iomt_serialize(const struct iomt *tree,
                    void (*write_fn)(void *userdata, const void *data, size_t len),
                    void *userdata)
{
    /* leafcount isn't needed */
    if(tree)
    {
        write_u64(write_fn, userdata, tree->mt_logleaves);

        if(tree->in_memory)
            write_fn(userdata, tree->mem.mt_leaves, sizeof(struct iomt_node) * tree->mt_leafcount);
        else
        {
            /* TODO: replace with database query */
            for(uint64_t i = 0; i < tree->mt_leafcount; ++i)
            {
                struct iomt_node node = iomt_getleaf(tree, i);
                write_fn(userdata, &node, sizeof(node));
            }
        }
    }
    else
        write_u64(write_fn, userdata, IOMT_EMPTY);
}

struct iomt *iomt_deserialize(int (*read_fn)(void *userdata, void *buf, size_t len),
                              void *userdata)
{
    uint64_t logleaves = read_u64(read_fn, userdata);

    if(logleaves == IOMT_EMPTY)
        return NULL;

    struct iomt *tree = iomt_new(logleaves);

    read_fn(userdata, tree->mem.mt_leaves, sizeof(struct iomt_node) * tree->mt_leafcount);

    iomt_fill(tree);

    return tree;
}

void iomt_free(struct iomt *tree)
{
    if(tree)
    {
        if(tree->in_memory)
        {
            free(tree->mem.mt_nodes);
            free(tree->mem.mt_leaves);
        }
        else
        {
            sqlite3_finalize(tree->db.getnode);
            sqlite3_finalize(tree->db.updatenode);
            sqlite3_finalize(tree->db.insertnode);
            sqlite3_finalize(tree->db.getleaf);
            sqlite3_finalize(tree->db.updateleaf);
            sqlite3_finalize(tree->db.insertleaf);
            sqlite3_finalize(tree->db.findleaf);
            sqlite3_finalize(tree->db.findencloser);
            sqlite3_finalize(tree->db.findleaf_or_encloser);
        }
        free(tree);
    }
}

/* arbitrary */
#define FILELINES_LOGLEAVES 10

struct iomt *iomt_from_lines(const char *filename)
{
    if(!filename)
        return NULL;

    struct iomt *tree = iomt_new(FILELINES_LOGLEAVES);

    FILE *f = fopen(filename, "r");

    SHA256_CTX ctx;
    SHA256_Init(&ctx);

    int c;
    uint64_t line = 0;

    do
    {
        c = fgetc(f);

        char ch = c;

        if(c != EOF)
            SHA256_Update(&ctx, &ch, sizeof(ch));

        if(ch == '\n' || c == EOF)
        {
            hash_t linehash;
            SHA256_Final(linehash.hash, &ctx);

            /* set this leaf to loop around */
            iomt_update_leaf_full(tree, line, line + 1, 1, linehash);

            if(line > 0)
            {
                /* make previously inserted leaf point to this leaf */
                iomt_update_leaf_nextidx(tree, line - 1, line + 1);
            }

            line++;

            /* re-initialize for next line */
            SHA256_Init(&ctx);
        }
    } while(c != EOF);

    fclose(f);

    return tree;
}

void print_leaf(struct iomt_node node)
{
    printf("(%lu, %s, %lu)",
           node.idx,
           hash_format(node.val, 4).str,
           node.next_idx);
}

void iomt_dump(const struct iomt *tree)
{
    if(tree)
    {
        for(uint64_t i = 0; i < tree->mt_leafcount; ++i)
        {
            struct iomt_node node = iomt_getleaf(tree, i);
            print_leaf(node);
            printf("%s", (i == tree->mt_leafcount - 1) ? "\n" : ", ");
        }
    }
    else
        printf("(null IOMT)\n");
}