aboutsummaryrefslogtreecommitdiff
path: root/service_provider.c
blob: 7f87b7221f9d81778169994abb2d2cdd2c83a1da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/* implementation of a basic service provider for use with the trusted
 * module */

#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#include "crypto.h"
#include "helper.h"
#include "service_provider.h"
#include "trusted_module.h"

struct file_version {
    hash_t kf; /* HMAC(key, file_idx) */
    hash_t l; /* HMAC(h(encrypted contents), kf) */
    hash_t encrypted_secret; /* XOR'd with HMAC(kf, module secret) */

    struct tm_cert vr_cert; /* VR certificate */
    hash_t vr_hmac;

    void *contents;
    size_t len;
};

struct file_record {
    uint64_t idx;
    uint64_t version;
    uint64_t counter;

    struct iomt_node *acl_leaves;
    int acl_nleaves;

    struct tm_cert fr_cert; /* issued by module */
    hash_t fr_hmac;

    struct file_version *versions;
    int nversions;
};

struct service_provider {
    struct trusted_module *tm;

    /* stored in sorted order; eventually a hash table would be
     * wise */
    struct file_record *records;
    size_t nrecords;

    struct iomt_node *mt_leaves; /* leaves of CDI-IOMT, value is counter */
    int mt_leafcount, mt_logleaves; /* mt_logleaves must equal 2^mt_leafcount */

    /* Each level of the IOMT is stored sequentially from left to
     * right, top to bottom, as follows:
     *
     *  [0]: root
     *  [1]: root left child
     *  [2]: root right child
     *  [3]: left child of [1]
     *  [4]: right child of [1]
     *  [5]: left child of [2]
     *  [6]: right child of [2],
     *
     * and so on.
     */
    hash_t *mt_nodes; /* this has 2 * mt_leafcount - 1 elements. Note
                       * that the bottom level consists of hashes of
                       * the leaf nodes. */
};

/* A bit of a hack: our complement calculation returns the *indices*
 * complementary nodes, which is good because the indices are much
 * smaller than the actual nodes (which are 32 bytes each with
 * SHA-256). However, the trusted module requires an array of the
 * actual hash values of the complementary nodes. It would be optimal
 * to modify each function to take the array of all nodes in the tree
 * in addition to the complement indices, but this function will serve
 * as a shim in the meantime. */
static hash_t *lookup_nodes(const hash_t *nodes, const int *indices, int n)
{
    hash_t *ret = calloc(n, sizeof(hash_t));
    for(int i = 0; i < n; ++i)
        ret[i] = nodes[indices[i]];
    return ret;
}

static void restore_nodes(hash_t *nodes, const int *indices, const hash_t *values, int n)
{
    for(int i = 0; i < n; ++i)
        nodes[indices[i]] = values[i];
}

/* Update mt_nodes to reflect a change to a leaf node's
 * value. Optionally, if old_dep is not NULL, *old_dep will be made to
 * point to an array of length mt_logleaves that contains the old node
 * values (whose indices are returned by merkle_dependents()). Untested. */
static void update_tree(struct service_provider *sp, uint64_t leafidx, hash_t newval,
                        hash_t **old_dep)
{
    if(old_dep)
        *old_dep = calloc(sp->mt_logleaves, sizeof(hash_t));

    uint64_t idx = (1 << sp->mt_logleaves) - 1 + leafidx;

    sp->mt_nodes[idx] = newval;
    for(int i = 0; i < sp->mt_logleaves; ++i)
    {
        /* find the merkle parent of the two children first */
        hash_t parent = merkle_parent(sp->mt_nodes[idx],
                                      sp->mt_nodes[bintree_sibling(idx)],
                                      (idx + 1) & 1);

        idx = bintree_parent(idx);

        /* save old value */
        if(old_dep)
            (*old_dep)[i] = sp->mt_nodes[idx];

        sp->mt_nodes[idx] = parent;
    }
}

/* Generate an EQ certificate for inserting a placeholder with index
 * placeholder_idx, given an encloser (which must actually enclose
 * a). Note: this function will modify the *mt_nodes array to reflect
 * the modification of the encloser node. However, it will restore the
 * original values before returning. This function belongs in here
 * service_provider.c and not helper.c since it directly accesses
 * service-provider specific functionality. */

/* NOTE: encloser_leafidx is *NOT* the index in the merkle tree leaf
 * node. It is the 0-based index of the POSITION of the leaf node,
 * counting from the leftmost leaf. */
struct tm_cert cert_eq(struct service_provider *sp,
                       const struct iomt_node *encloser,
                       uint64_t encloser_leafidx,
                       uint64_t placeholder_leafidx, uint64_t placeholder_nodeidx,
                       hash_t *hmac_out)
{
    assert(encloses(encloser->idx, encloser->next_idx, placeholder_nodeidx));

    struct iomt_node encloser_mod = *encloser;
    encloser_mod.next_idx = placeholder_nodeidx;

    struct iomt_node insert;
    insert.idx = placeholder_nodeidx;
    insert.next_idx = encloser->next_idx;
    insert.val = hash_null;

    hash_t h_enc    = hash_node(encloser);
    hash_t h_encmod = hash_node(&encloser_mod);

    hash_t h_ins = hash_node(&insert);

    int *orders_enc, *orders_ins;
    int *compidx_enc = merkle_complement(encloser_leafidx, sp->mt_logleaves, &orders_enc);
    int *compidx_ins = merkle_complement(placeholder_leafidx, sp->mt_logleaves, &orders_ins);

    hash_t *comp_enc = lookup_nodes(sp->mt_nodes, compidx_enc, sp->mt_logleaves);

    /* we need two NU certificates */
    hash_t nu1_hmac, nu2_hmac;

    struct tm_cert nu1 = tm_cert_node_update(sp->tm,
                                             h_enc, h_encmod,
                                             comp_enc, orders_enc, sp->mt_logleaves,
                                             &nu1_hmac);

    /* We now update the ancestors of the encloser node. */
    hash_t *old_depvalues;
    update_tree(sp, encloser_leafidx, h_encmod, &old_depvalues);

    hash_t *comp_ins = lookup_nodes(sp->mt_nodes, compidx_ins, sp->mt_logleaves);

    struct tm_cert nu2 = tm_cert_node_update(sp->tm,
                                             hash_null, h_ins,
                                             comp_ins, orders_ins, sp->mt_logleaves,
                                             &nu2_hmac);

    /* restore the tree */
    int *dep_indices = merkle_dependents(encloser_leafidx, sp->mt_logleaves);
    restore_nodes(sp->mt_nodes,  dep_indices, old_depvalues, sp->mt_logleaves);

    return tm_cert_equiv(sp->tm, &nu1, nu1_hmac, &nu2, nu2_hmac, encloser, placeholder_nodeidx, hmac_out);
}

/* Calculate the value of all the nodes of the tree, given the IOMT
 * leaves in mt_leaves. Leaf count *must* be an integer power of two,
 * otherwise bad things will happen. This function should only need to
 * be called once, namely when the service provider is created. */
static void fill_tree(struct service_provider *sp)
{
    for(int i = 0; i < sp->mt_leafcount; ++i)
    {
        uint64_t mt_idx = (1 << sp->mt_logleaves) - 1 + i;
        sp->mt_nodes[mt_idx] = hash_node(sp->mt_leaves + i);
    }
    /* now loop up from the bottom level, calculating the parent of
     * each pair of nodes */
    for(int i = sp->mt_logleaves - 1; i >= 0; --i)
    {
        uint64_t baseidx = (1 << i) - 1;
        for(int j = 0; j < (1 << i); ++j)
        {
            uint64_t mt_idx = baseidx + j;
            sp->mt_nodes[mt_idx] = merkle_parent(sp->mt_nodes[2 * mt_idx + 1],
                                                 sp->mt_nodes[2 * mt_idx + 2],
                                                 0);
        }
    }
}

/* in trusted_module.c */
void check(int condition);

/* leaf count will be 2^logleaves */
struct service_provider *sp_new(const void *key, size_t keylen, int logleaves)
{
    assert(logleaves > 0);
    struct service_provider *sp = calloc(1, sizeof(*sp));

    sp->tm = tm_new(key, keylen);

    sp->mt_leafcount = 1 << logleaves;
    sp->mt_logleaves = logleaves;
    sp->mt_leaves = calloc(sp->mt_leafcount, sizeof(struct iomt_node));

    sp->mt_nodes = calloc(2 * sp->mt_leafcount - 1, sizeof(hash_t));

    /* The trusted module initializes itself with a single placeholder
     * node (1,0,1). We first update our list of IOMT leaves. Then we
     * insert our desired number of nodes by using EQ certificates to
     * update the internal IOMT root. Note that leaf indices are
     * 1-indexed. */
    sp->mt_leaves[0] = (struct iomt_node) { 1, 1, hash_null };
    update_tree(sp, 0, hash_node(sp->mt_leaves + 0), NULL);

    for(int i = 1; i < sp->mt_leafcount; ++i)
    {
        /* generate EQ certificate */
        hash_t hmac;
        struct tm_cert eq = cert_eq(sp, sp->mt_leaves + i - 1,
                                    i - 1,
                                    i, i + 1,
                                    &hmac);
        assert(eq.type == EQ);

        /* update previous leaf's index */
        sp->mt_leaves[i - 1].next_idx = i + 1;
        update_tree(sp, i - 1, hash_node(sp->mt_leaves + i - 1), NULL);

        sp->mt_leaves[i] = (struct iomt_node) { i + 1, 1, hash_null };
        update_tree(sp, i, hash_node(sp->mt_leaves + i), NULL);

        assert(tm_set_equiv_root(sp->tm, &eq, hmac));
    }

    /* loop around */
#if 0
    hash_t hmac;
    struct tm_cert eq = cert_eq(sp, sp->mt_leaves + sp->mt_leafcount - 2,
                                sp->mt_leafcount - 2,
                                sp->mt_leafcount - 1, sp->mt_leafcount,
                                &hmac);
    assert(eq.type == EQ);

    tm_set_equiv_root(sp->tm, &eq, hmac);

    sp->mt_leaves[sp->mt_leafcount - 1] = (struct iomt_node) { sp->mt_leafcount, 1, hash_null };
    update_tree(sp, sp->mt_leafcount - 1, hash_node(sp->mt_leaves + sp->mt_leafcount - 1), NULL);
#endif

    /* We shouldn't need this; the incremental update_tree() calls
     * should give the same result. */
    //fill_tree(sp);

    /* everything else is already zeroed by calloc */
    return sp;
}

/* linear search for record given idx */
static struct file_record *lookup_record(struct service_provider *sp, int idx)
{
    for(int i = 0; i < sp->nrecords; ++i)
        if(idx == sp->records[i].idx)
            return sp->records + i;
    return NULL;
}

/* Should we insert sorted (for O(logn) lookup), or just at the end to
 * avoid copying (O(n) lookup, O(1) insertion)? Probably better to use a hash
 * table. */

/* We do not check to ensure that there are no duplicate file indices;
 * this is up to the caller */
static void append_record(struct service_provider *sp, const struct file_record *rec)
{
    sp->records = realloc(sp->records, sizeof(struct file_record) * ++sp->nrecords);
    sp->records[sp->nrecords - 1] = *rec;
}

static void append_version(struct file_record *rec, const struct file_version *ver)
{
    rec->versions = realloc(rec->versions, sizeof(struct file_version) * ++rec->nversions);
    rec->versions[rec->nversions - 1] = *ver;
}

/* This does the majority of the work that actually modifies or
 * creates a file. It expects a filled and signed user_request
 * structure, req, and will return the resulting FR certificate and
 * its signature in *hmac_out. Additionally, the module's
 * authenticated acknowledgement (equal to HMAC(req | 0), where |
 * indicates concatenation) is output in *ack_hmac_out.
 *
 * If the request is to modify the file, the parameters
 * encrypted_secret, kf, encrypted_contents, and contents_len are used
 * (otherwise they are ignored). `encrypted_secret' should be the file
 * encryption key XOR'd with HMAC(file index | file counter,
 * user_key). kf should be HMAC(encryption secret, file index).
 */
struct tm_cert sp_request(struct service_provider *sp,
                          const struct user_request *req, hash_t req_hmac,
                          hash_t *hmac_out,
                          struct tm_cert *vr_out, hash_t *vr_hmac_out,
                          hash_t *ack_hmac_out,
                          hash_t encrypted_secret, hash_t kf,
                          const void *encrypted_contents,
                          size_t contents_len)
{
    struct tm_cert vr = cert_null;
    hash_t vr_hmac, ack_hmac, fr_hmac;
    vr_hmac = ack_hmac = fr_hmac = hash_null;

    /* execute the request */
    struct tm_cert fr = tm_request(sp->tm, req, req_hmac, &fr_hmac, &vr, &vr_hmac, &ack_hmac);

    /* now update our databases based on the result */
    if(fr.type == FR)
    {
        /* update the corresponding file record */
        struct file_record *rec = lookup_record(sp, fr.fr.idx);
        bool need_insert = false;
        if(!rec)
        {
            rec = calloc(1, sizeof(struct file_record));
            need_insert = true;
        }

        rec->counter = fr.fr.counter;
        rec->fr_cert = fr;
        rec->fr_hmac = fr_hmac;

        if(rec->version != fr.fr.version)
        {
            rec->version = fr.fr.version;

            struct file_version ver;
            hash_t gamma = sha256(encrypted_contents, contents_len);
            ver.l = hmac_sha256(&gamma, sizeof(gamma),
                                &kf, sizeof(kf));

            if(!is_zero(encrypted_secret) && !is_zero(kf))
            {
                /* File is encrypted */
                ver.encrypted_secret = tm_verify_and_encrypt_secret(sp->tm,
                                                                    rec->idx, rec->counter,
                                                                    req->user_id,
                                                                    encrypted_secret, kf);
                assert(!is_zero(ver.encrypted_secret));

                /* We have no way of verifying that kf=HMAC(encryption
                 * secret, file index) ourselves; instead we rely on the
                 * module to do so for us. */
                ver.kf = kf;
            }
            else
            {
                ver.encrypted_secret = hash_null;
            }

            ver.vr_cert = vr;
            ver.vr_hmac = vr_hmac;

            append_version(rec, &ver);
        }

        if(need_insert)
        {
            append_record(sp, rec);

            /* append_record will make a copy */
            free(rec);
        }

        /* update our tree */
        sp->mt_leaves[req->idx - 1].val = u64_to_hash(fr.fr.counter);
    }

    /* return values to caller */
    if(hmac_out)
        *hmac_out = fr_hmac;
    if(vr_out)
        *vr_out = vr;
    if(vr_hmac_out)
        *vr_hmac_out = vr_hmac;
    if(ack_hmac_out)
        *ack_hmac_out = ack_hmac;

    return fr;
}

void sp_test(void)
{
    /* 2^10 = 1024 leaves ought to be enough for anybody */
    int logleaves = 4;
    struct service_provider *sp = sp_new("a", 1, logleaves);

    /* construct a request to create a file */
    printf("File creation: ");
    int *file_compidx, *file_orders;
    file_compidx = merkle_complement(0, sp->mt_logleaves, &file_orders);

    hash_t *file_comp = lookup_nodes(sp->mt_nodes, file_compidx, sp->mt_logleaves);

    struct user_request req = req_filecreate(sp->tm, 1,
                                             sp->mt_leaves + 0,
                                             file_comp, file_orders, sp->mt_logleaves);

    hash_t req_hmac = hmac_sha256(&req, sizeof(req), "a", 1);
    hash_t fr_hmac;
    hash_t ack_hmac;

    struct tm_cert fr_cert = sp_request(sp, &req, req_hmac, &fr_hmac, NULL, NULL, &ack_hmac,
                                        hash_null, hash_null, NULL, 0);

    check(fr_cert.type == FR &&
          fr_cert.fr.counter == 1 &&
          fr_cert.fr.version == 0);

    struct iomt_node acl_node = (struct iomt_node) { 1, 1, u64_to_hash(3) };

    //sp->mt_leaves[0].val = u64_to_hash(1);
    /* modification */
    struct user_request mod = req_filemodify(sp->tm,
                                             &fr_cert, fr_hmac,
                                             sp->mt_leaves + 0,
                                             file_comp, file_orders, sp->mt_logleaves,
                                             &acl_node,
                                             NULL, NULL, 0,
                                             hash_null);

    req_hmac = hmac_sha256(&mod, sizeof(mod), "a", 1);

    struct tm_cert vr;
    hash_t vr_hmac;

    struct tm_cert new_fr = sp_request(sp, &mod, req_hmac, &fr_hmac, &vr, &vr_hmac, &ack_hmac,
                                       hash_null, hash_null, "contents", 8);
    printf("File modification: ");
    check(new_fr.type == FR);

    printf("Complement calculation: ");
    int *orders;
    int *comp = merkle_complement(6, 4, &orders);
    int correct[] = { 22, 9, 3, 2 };
    int correct_orders[] = { 1, 0, 0, 1 };
    check(!memcmp(comp, correct, 4 * sizeof(int)) && !memcmp(orders, correct_orders, 4 * sizeof(int)));
    free(orders);
    free(comp);

    printf("Dependency calculation: ");
    int *dep = merkle_dependents(6, 4);
    int correct_dep[] = { 10, 4, 1, 0 };
    check(!memcmp(dep, correct_dep, 4 * sizeof(int)));
    free(dep);

    /* test tree initilization (only simple case) */
    if(logleaves == 1)
    {
        struct iomt_node a = { 1, 2, hash_null };
        struct iomt_node b = { 2, 1, hash_null };
        printf("Merkle tree initialization: ");
        check(hash_equals(sp->mt_nodes[0], merkle_parent(hash_node(&a), hash_node(&b), 0)));
    }
}