1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/* implementation of a basic service provider for use with the trusted
* module */
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "crypto.h"
#include "helper.h"
#include "service_provider.h"
#include "trusted_module.h"
struct file_version {
hash_t kf; /* h(key, file_idx) */
hash_t l; /* h(h(file contents), kf) */
hash_t enc_key; /* XOR'd with h(kf, module secret) */
struct tm_cert cert; /* VR certificate */
hash_t cert_hmac;
void *contents;
size_t len;
};
struct file_record {
int idx;
int version;
int counter;
struct iomt_node *acl_leaves;
int acl_nleaves;
struct tm_cert fr_cert; /* issued by module */
hash_t fr_hmac;
struct file_version *versions;
int n_versions;
};
struct service_provider {
struct trusted_module *tm;
/* stored in sorted order; eventually a hash table would be
* wise */
struct file_record *records;
size_t nrecords;
struct iomt_node *mt_leaves; /* leaves of CDI-IOMT, value is counter */
int mt_leafcount, mt_logleaves; /* mt_logleaves must equal 2^mt_leafcount */
/* Each level of the IOMT is stored sequentially from left to
* right, top to bottom, as follows:
*
* [0]: root
* [1]: root left child
* [2]: root right child
* [3]: left child of [1]
* [4]: right child of [1]
* [5]: left child of [2]
* [6]: right child of [2],
*
* and so on.
*/
hash_t *mt_nodes; /* this has 2 * mt_leafcount - 1 elements. Note
* that the bottom level consists of hashes of
* the leaf nodes. */
};
/* A bit of a hack: our complement calculation returns the *indices*
* complementary nodes, which is good because the indices are much
* smaller than the actual nodes (which are 32 bytes each with
* SHA-256). However, the trusted module requires an array of the
* actual hash values of the complementary nodes. It would be optimal
* to modify each function to take the array of all nodes in the tree
* in addition to the complement indices, but this function will serve
* as a shim in the meantime. */
static hash_t *lookup_nodes(const hash_t *nodes, const int *indices, int n)
{
hash_t *ret = calloc(n, sizeof(hash_t));
for(int i = 0; i < n; ++i)
ret[i] = nodes[indices[i]];
return ret;
}
/* Calculate the value of all the nodes of the tree, given the IOMT
* leaves in mt_leaves. Leaf count *must* be an integer power of two,
* otherwise bad things will happen. This function should only need to
* be called once, namely when the service provider is created. */
static void fill_tree(struct service_provider *sp)
{
for(int i = 0; i < sp->mt_leafcount; ++i)
{
int mt_idx = (1 << sp->mt_logleaves) - 1 + i;
sp->mt_nodes[mt_idx] = hash_node(sp->mt_leaves + i);
}
/* now loop up from the bottom level, calculating the parent of
* each pair of nodes */
for(int i = sp->mt_logleaves - 1; i >= 0; --i)
{
int baseidx = (1 << i) - 1;
for(int j = 0; j < (1 << i); ++j)
{
int mt_idx = baseidx + j;
sp->mt_nodes[mt_idx] = merkle_parent(sp->mt_nodes[2 * mt_idx + 1],
sp->mt_nodes[2 * mt_idx + 2],
0);
}
}
}
/* leaf count will be 2^logleaves */
struct service_provider *sp_new(const void *key, size_t keylen, int logleaves)
{
struct service_provider *sp = calloc(1, sizeof(*sp));
sp->tm = tm_new(key, keylen);
sp->mt_leafcount = 1 << logleaves;
sp->mt_logleaves = logleaves;
sp->mt_leaves = calloc(sp->mt_leafcount, sizeof(struct iomt_node));
sp->mt_nodes = calloc(2 * sp->mt_leafcount - 1, sizeof(hash_t));
/* The trusted module initializes itself with a single placeholder
* node (1,0,1). We first update our list of IOMT leaves. Then we
* insert our desired number of nodes by using EQ certificates to
* update the internal IOMT root. Note that leaf indices are
* 1-indexed. */
for(int i = 0; i < sp->mt_leafcount - 1; ++i)
sp->mt_leaves[i] = (struct iomt_node) { i + 1, i + 2, hash_null };
/* loop around */
sp->mt_leaves[sp->mt_leafcount - 1] = (struct iomt_node) { sp->mt_leafcount, 1, hash_null };
fill_tree(sp);
/* everything else is already zeroed by calloc */
return sp;
}
/* linear search for record given idx */
static struct file_record *lookup_record(struct service_provider *sp, int idx)
{
for(int i = 0; i < sp->nrecords; ++i)
if(idx == sp->records[i].idx)
return sp->records + i;
return NULL;
}
/* Should we insert sorted (for O(logn) lookup), or just at the end to
* avoid copying (O(n) lookup, O(1) insertion)? Probably better to use a hash
* table. */
static void insert_record(struct service_provider *sp, struct file_record *rec)
{
/* TODO */
}
/* this does the majority of the work that actually modifies or
* creates a file */
struct tm_cert sp_request(struct service_provider *sp,
const struct user_request *req, hash_t req_hmac,
hash_t *hmac_out,
struct tm_cert *vr_out, hash_t *vr_hmac_out,
hash_t *ack_hmac_out)
{
struct tm_cert vr = cert_null;
hash_t vr_hmac, ack_hmac, fr_hmac;
vr_hmac = ack_hmac = fr_hmac = hash_null;
/* execute the request */
struct tm_cert fr = tm_request(sp->tm, req, req_hmac, &fr_hmac, &vr, &vr_hmac, &ack_hmac);
/* now update our databases based on the result */
if(fr.type == FR)
{
/* update the corresponding file record */
struct file_record *rec = lookup_record(sp, fr.fr.idx);
bool need_insert = false;
if(!rec)
{
rec = calloc(1, sizeof(struct file_record));
need_insert = true;
}
rec->version = fr.fr.version;
rec->counter = fr.fr.counter;
rec->fr_cert = fr;
rec->fr_hmac = fr_hmac;
if(need_insert)
insert_record(sp, rec);
/* update our tree */
/* TODO */
}
/* return values to caller */
if(hmac_out)
*hmac_out = fr_hmac;
if(vr_out)
*vr_out = vr;
if(vr_hmac_out)
*vr_hmac_out = vr_hmac;
if(ack_hmac_out)
*ack_hmac_out = ack_hmac;
return fr;
}
/* in trusted_module.c */
void check(int condition);
void sp_test(void)
{
/* 2^10 = 1024 leaves ought to be enough for anybody */
int logleaves = 1;
struct service_provider *sp = sp_new("a", 1, logleaves);
/* construct a request to create a file */
struct user_request req;
req.idx = 1;
req.user_id = 1;
req.type = ACL_UPDATE;
req.counter = 0;
struct iomt_node acl_node;
acl_node.idx = 1;
memset(&acl_node.val, 0, sizeof(acl_node.val));
acl_node.val.hash[0] = 3; /* full access */
acl_node.next_idx = 1;
req.val = merkle_compute(hash_node(&acl_node), NULL, NULL, 0);
struct iomt_node node;
node.idx = 1;
memset(node.val.hash, 0, 32);
node.next_idx = 1;
hash_t one;
memset(one.hash, 0, 32);
one.hash[0] = 1;
hash_t ru_hmac;
/* we need a RU certificate of the form [f, 0, root, 1, new root],
* which requires a NU certificate of the form [v, root, v', new
* root], where v=h(original IOMT node) and v'=h(new IOMT node) */
struct tm_cert ru = cert_ru(sp->tm, &node, one,
NULL, NULL, 0,
&ru_hmac,
0, NULL, NULL);
printf("RU generation: ");
check(ru.type == RU &&
ru.ru.idx == 1 &&
hash_equals(ru.ru.orig_val, node.val) &&
hash_equals(ru.ru.new_val, one));
/* now create a request */
req.create.ru_cert = ru;
req.create.ru_hmac = ru_hmac;
hash_t req_hmac = hmac_sha256(&req, sizeof(req), "a", 1);
hash_t fr_hmac;
hash_t ack_hmac;
struct tm_cert fr_cert = sp_request(sp, &req, req_hmac, &fr_hmac, NULL, NULL, &ack_hmac);
printf("File creation: ");
check(fr_cert.type == FR &&
fr_cert.fr.counter == 1 &&
fr_cert.fr.version == 0);
/* modification */
struct user_request mod;
mod.type = FILE_UPDATE;
mod.idx = 1;
mod.user_id = 1;
mod.counter = 1;
mod.modify.fr_cert = fr_cert;
mod.modify.fr_hmac = fr_hmac;
mod.modify.rv_cert = cert_rv(sp->tm,
&acl_node,
NULL, NULL, 0,
&mod.modify.rv_hmac);
struct iomt_node node2;
node2.idx = 1;
node2.val = one;
node2.next_idx = 1;
hash_t two;
memset(&two, 0, sizeof(two));
two.hash[0] = 2;
mod.modify.ru_cert = cert_ru(sp->tm, &node2, two,
NULL, NULL, 0,
&mod.modify.ru_hmac,
0, NULL, NULL);
req_hmac = hmac_sha256(&mod, sizeof(mod), "a", 1);
struct tm_cert vr;
hash_t vr_hmac;
struct tm_cert new_fr = sp_request(sp, &mod, req_hmac, &fr_hmac, &vr, &vr_hmac, &ack_hmac);
printf("File modification: ");
check(new_fr.type == FR);
printf("Complement calculation: ");
int *orders;
int *comp = merkle_complement(6, 4, &orders);
int correct[] = { 22, 9, 3, 2 };
int correct_orders[] = { 1, 0, 0, 1 };
check(!memcmp(comp, correct, 4 * sizeof(int)) && !memcmp(orders, correct_orders, 4 * sizeof(int)));
/* broken */
#if 0
{
int *orders_enc, *orders_ins;
int *compidx_enc, *compidx_ins;
compidx_enc = merkle_complement(0, 1, &orders_enc);
compidx_ins = merkle_complement(1, 1, &orders_ins);
hash_t *comp_enc = lookup_nodes(sp->mt_nodes, compidx_enc, logleaves);
hash_t *comp_ins = lookup_nodes(sp->mt_nodes, compidx_ins, logleaves);
hash_t hmac;
struct tm_cert eq = cert_eq(sp->tm, sp->mt_leaves + 0, 2,
comp_enc, orders_enc, logleaves,
comp_ins, orders_ins, logleaves,
&hmac);
/* broken */
printf("EQ generation: ");
check(eq.type == EQ);
}
#endif
/* test tree initilization (only simple case) */
if(logleaves == 1)
{
struct iomt_node a = { 1, 2, hash_null };
struct iomt_node b = { 2, 1, hash_null };
printf("Merkle tree initialization: ");
check(hash_equals(sp->mt_nodes[0], merkle_parent(hash_node(&a), hash_node(&b), 0)));
}
}
|